DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are delighted to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, in addition to the distilled versions ranging from 1.5 to 70 billion parameters to develop, experiment, and properly scale your generative AI ideas on AWS.
In this post, we show how to begin with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to release the distilled variations of the models also.
Overview of DeepSeek-R1
DeepSeek-R1 is a big language model (LLM) developed by DeepSeek AI that utilizes reinforcement learning to boost thinking abilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. A key distinguishing feature is its reinforcement learning (RL) step, which was used to refine the model's reactions beyond the standard pre-training and tweak process. By integrating RL, DeepSeek-R1 can adapt better to user feedback and goals, ultimately improving both significance and clearness. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) approach, meaning it's geared up to break down complex inquiries and factor through them in a detailed way. This assisted reasoning process permits the design to produce more accurate, transparent, and detailed responses. This model integrates RL-based fine-tuning with CoT capabilities, aiming to generate structured actions while concentrating on interpretability and user interaction. With its comprehensive capabilities DeepSeek-R1 has captured the market's attention as a versatile text-generation model that can be integrated into various workflows such as agents, sensible reasoning and data analysis jobs.
DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture permits activation of 37 billion criteria, allowing effective reasoning by routing questions to the most appropriate specialist "clusters." This approach permits the design to concentrate on various problem domains while maintaining total performance. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for reasoning. In this post, we will use an ml.p5e.48 xlarge circumstances to release the model. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the reasoning capabilities of the main R1 design to more effective architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller sized, more effective designs to imitate the habits and reasoning patterns of the bigger DeepSeek-R1 design, utilizing it as an instructor model.
You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we recommend deploying this design with guardrails in place. In this blog, we will use Amazon Bedrock Guardrails to present safeguards, avoid harmful material, and evaluate models against essential security requirements. At the time of writing this blog site, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can develop multiple guardrails tailored to different usage cases and apply them to the DeepSeek-R1 design, enhancing user experiences and standardizing safety controls throughout your generative AI applications.
Prerequisites
To deploy the DeepSeek-R1 design, you require access to an ml.p5e instance. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and validate you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To request a limit boost, develop a limit increase demand and connect to your account team.
Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) consents to utilize Amazon Bedrock Guardrails. For guidelines, see Set up consents to use guardrails for content filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails permits you to present safeguards, prevent damaging content, and evaluate designs against essential safety criteria. You can execute security procedures for the DeepSeek-R1 design utilizing the Amazon Bedrock ApplyGuardrail API. This enables you to use guardrails to evaluate user inputs and design reactions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.
The basic flow includes the following actions: First, the system gets an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for reasoning. After receiving the model's output, another guardrail check is applied. If the output passes this final check, it's returned as the final outcome. However, if either the input or output is intervened by the guardrail, a message is returned indicating the nature of the intervention and whether it occurred at the input or output stage. The examples showcased in the following sections show inference utilizing this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:
1. On the Amazon Bedrock console, select Model catalog under Foundation designs in the navigation pane.
At the time of writing this post, you can utilize the InvokeModel API to invoke the design. It does not support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a provider and pick the DeepSeek-R1 model.
The model detail page offers important details about the model's capabilities, pricing structure, and genbecle.com implementation guidelines. You can find detailed usage directions, including sample API calls and code snippets for integration. The model supports different text generation tasks, consisting of creation, code generation, and concern answering, utilizing its support learning optimization and CoT reasoning abilities.
The page also consists of implementation options and licensing details to help you start with DeepSeek-R1 in your applications.
3. To start utilizing DeepSeek-R1, choose Deploy.
You will be triggered to configure the deployment details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, go into an endpoint name (between 1-50 alphanumeric characters).
5. For Number of instances, get in a variety of circumstances (between 1-100).
6. For example type, select your instance type. For optimum efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is recommended.
Optionally, you can set up innovative security and facilities settings, consisting of virtual private cloud (VPC) networking, service role permissions, and encryption settings. For the majority of use cases, the default settings will work well. However, for production implementations, you may wish to examine these settings to align with your company's security and compliance requirements.
7. Choose Deploy to start utilizing the design.
When the release is complete, you can evaluate DeepSeek-R1's abilities straight in the Amazon Bedrock play area.
8. Choose Open in play area to access an interactive user interface where you can experiment with various triggers and change model criteria like temperature level and maximum length.
When utilizing R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat template for optimal outcomes. For instance, material for reasoning.
This is an outstanding method to explore the design's reasoning and text generation capabilities before integrating it into your applications. The play ground provides instant feedback, helping you comprehend how the model reacts to numerous inputs and letting you fine-tune your triggers for optimal results.
You can rapidly check the design in the play ground through the UI. However, to conjure up the deployed model programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.
Run reasoning using guardrails with the deployed DeepSeek-R1 endpoint
The following code example demonstrates how to perform reasoning using a released DeepSeek-R1 design through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have created the guardrail, use the following code to carry out guardrails. The script initializes the bedrock_runtime customer, sets up reasoning criteria, and sends out a demand to generate text based upon a user prompt.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML solutions that you can release with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your data, and release them into production using either the UI or SDK.
Deploying DeepSeek-R1 model through SageMaker JumpStart provides 2 hassle-free methods: using the intuitive SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's check out both techniques to assist you select the technique that best suits your needs.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following steps to release DeepSeek-R1 using SageMaker JumpStart:
1. On the SageMaker console, pick Studio in the navigation pane.
2. First-time users will be prompted to produce a domain.
3. On the SageMaker Studio console, pick JumpStart in the navigation pane.
The model browser shows available models, with details like the service provider name and model abilities.
4. Look for DeepSeek-R1 to see the DeepSeek-R1 model card.
Each design card reveals key details, including:
- Model name
- Provider name
- Task category (for example, Text Generation).
Bedrock Ready badge (if applicable), indicating that this design can be registered with Amazon Bedrock, permitting you to utilize Amazon Bedrock APIs to invoke the model
5. Choose the model card to view the design details page.
The model details page includes the following details:
- The model name and service provider details. Deploy button to deploy the design. About and Notebooks tabs with detailed details
The About tab includes essential details, such as:
- Model description. - License details.
- Technical requirements.
- Usage standards
Before you release the model, it's advised to examine the design details and license terms to confirm compatibility with your use case.
6. Choose Deploy to proceed with release.
7. For Endpoint name, use the immediately generated name or produce a custom one.
- For example type ¸ choose a circumstances type (default: ml.p5e.48 xlarge).
- For Initial instance count, get in the variety of circumstances (default: 1). Selecting suitable instance types and counts is vital for expense and efficiency optimization. Monitor your deployment to adjust these settings as needed.Under Inference type, Real-time inference is selected by default. This is enhanced for sustained traffic and low latency.
- Review all setups for precision. For this model, we highly recommend sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in location.
- Choose Deploy to deploy the model.
The implementation procedure can take a number of minutes to complete.
When release is total, your endpoint status will change to InService. At this point, the design is all set to accept reasoning demands through the endpoint. You can monitor the release progress on the SageMaker console Endpoints page, which will display pertinent metrics and status details. When the release is total, you can invoke the model utilizing a SageMaker runtime customer and integrate it with your applications.
Deploy DeepSeek-R1 using the SageMaker Python SDK
To get going with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to set up the SageMaker Python SDK and make certain you have the necessary AWS consents and environment setup. The following is a detailed code example that shows how to release and utilize DeepSeek-R1 for reasoning programmatically. The code for releasing the model is offered in the Github here. You can clone the note pad and run from SageMaker Studio.
You can run additional requests against the predictor:
Implement guardrails and run reasoning with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail using the Amazon Bedrock console or the API, and implement it as shown in the following code:
Tidy up
To avoid undesirable charges, finish the steps in this area to tidy up your resources.
Delete the Amazon Bedrock Marketplace implementation
If you released the design using Amazon Bedrock Marketplace, total the following steps:
1. On the Amazon Bedrock console, under Foundation models in the navigation pane, select Marketplace releases. - In the Managed implementations section, locate the endpoint you wish to delete.
- Select the endpoint, and on the Actions menu, select Delete.
- Verify the endpoint details to make certain you're deleting the proper implementation: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart model you released will sustain costs if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we explored how you can access and release the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to begin. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting begun with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI companies construct ingenious solutions utilizing AWS services and accelerated compute. Currently, he is focused on developing methods for fine-tuning and optimizing the reasoning efficiency of large language models. In his totally free time, Vivek delights in hiking, viewing films, and trying different foods.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.
Jonathan Evans is an Expert Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.
Banu Nagasundaram leads product, engineering, and strategic collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about constructing services that help customers accelerate their AI journey and unlock business value.