Skip to content

GitLab

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
C ccrr
  • Project overview
    • Project overview
    • Details
    • Activity
  • Issues 30
    • Issues 30
    • List
    • Boards
    • Labels
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Operations
    • Operations
    • Incidents
    • Environments
  • Packages & Registries
    • Packages & Registries
    • Package Registry
  • Analytics
    • Analytics
    • Value Stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
Collapse sidebar
  • Alphonse Cronin
  • ccrr
  • Issues
  • #7

Closed
Open
Created Feb 28, 2025 by Alphonse Cronin@alphonsecroninMaintainer

DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart


Today, we are delighted to reveal that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier design, wiki.asexuality.org DeepSeek-R1, in addition to the distilled variations ranging from 1.5 to 70 billion specifications to build, experiment, and responsibly scale your generative AI concepts on AWS.

In this post, we demonstrate how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable steps to release the distilled variations of the models too.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language design (LLM) established by DeepSeek AI that utilizes reinforcement discovering to improve thinking abilities through a multi-stage training process from a DeepSeek-V3-Base structure. A crucial distinguishing function is its reinforcement learning (RL) action, which was used to refine the design's responses beyond the basic pre-training and tweak procedure. By incorporating RL, DeepSeek-R1 can adjust better to user feedback and objectives, ultimately improving both relevance and clearness. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) technique, suggesting it's geared up to break down intricate queries and reason through them in a detailed manner. This assisted reasoning process allows the model to produce more precise, transparent, and detailed responses. This model combines RL-based fine-tuning with CoT capabilities, aiming to create structured reactions while concentrating on interpretability and user interaction. With its comprehensive capabilities DeepSeek-R1 has caught the industry's attention as a flexible text-generation model that can be incorporated into various workflows such as agents, sensible reasoning and information analysis jobs.

DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture enables activation of 37 billion criteria, making it possible for effective inference by routing questions to the most pertinent professional "clusters." This method permits the design to concentrate on various issue domains while maintaining overall effectiveness. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for reasoning. In this post, we will utilize an ml.p5e.48 xlarge circumstances to deploy the model. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the thinking abilities of the main R1 design to more effective architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller sized, more effective models to simulate the habits and reasoning patterns of the bigger DeepSeek-R1 design, utilizing it as an instructor model.

You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we suggest releasing this model with guardrails in place. In this blog site, we will utilize Amazon Bedrock Guardrails to introduce safeguards, avoid harmful material, and assess models against essential safety requirements. At the time of composing this blog, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can produce numerous guardrails tailored to various usage cases and use them to the DeepSeek-R1 model, enhancing user experiences and standardizing safety controls across your generative AI applications.

Prerequisites

To release the DeepSeek-R1 model, you need access to an ml.p5e . To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and validate you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To request a limitation increase, create a limitation boost request and reach out to your account team.

Because you will be deploying this design with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) authorizations to use Amazon Bedrock Guardrails. For guidelines, see Set up authorizations to utilize guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails permits you to introduce safeguards, prevent damaging material, and evaluate designs against crucial safety criteria. You can implement precaution for the DeepSeek-R1 design utilizing the Amazon Bedrock ApplyGuardrail API. This allows you to use guardrails to assess user inputs and design reactions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.

The basic flow involves the following steps: First, the system receives an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the design for reasoning. After getting the design's output, another guardrail check is applied. If the output passes this last check, it's returned as the final result. However, if either the input or output is intervened by the guardrail, a message is returned showing the nature of the intervention and whether it took place at the input or output stage. The examples showcased in the following sections show inference utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized foundation models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:

1. On the Amazon Bedrock console, choose Model brochure under Foundation designs in the navigation pane. At the time of composing this post, you can use the InvokeModel API to conjure up the design. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a provider and select the DeepSeek-R1 design.

The model detail page offers important details about the model's abilities, pricing structure, and execution guidelines. You can find detailed usage directions, consisting of sample API calls and code snippets for integration. The design supports numerous text generation jobs, including material production, code generation, and question answering, utilizing its support finding out optimization and CoT thinking capabilities. The page likewise consists of release options and licensing details to help you get going with DeepSeek-R1 in your applications. 3. To start utilizing DeepSeek-R1, select Deploy.

You will be triggered to set up the release details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, get in an endpoint name (between 1-50 alphanumeric characters). 5. For Variety of instances, get in a number of circumstances (between 1-100). 6. For Instance type, select your circumstances type. For ideal efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is advised. Optionally, you can set up advanced security and facilities settings, consisting of virtual private cloud (VPC) networking, service function approvals, and file encryption settings. For many use cases, the default settings will work well. However, for production implementations, you may want to examine these settings to line up with your company's security and compliance requirements. 7. Choose Deploy to begin using the model.

When the release is total, you can evaluate DeepSeek-R1's abilities straight in the Amazon Bedrock play ground. 8. Choose Open in play area to access an interactive user interface where you can try out different triggers and change design criteria like temperature level and maximum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for optimum results. For example, material for reasoning.

This is an excellent way to explore the model's reasoning and text generation capabilities before incorporating it into your applications. The play ground offers instant feedback, helping you comprehend how the design reacts to different inputs and letting you fine-tune your prompts for optimal outcomes.

You can rapidly test the design in the play area through the UI. However, to conjure up the released model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run inference using guardrails with the deployed DeepSeek-R1 endpoint

The following code example demonstrates how to carry out inference utilizing a released DeepSeek-R1 design through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have actually produced the guardrail, use the following code to implement guardrails. The script initializes the bedrock_runtime customer, configures inference criteria, and sends out a request to produce text based on a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML services that you can deploy with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your use case, with your information, and deploy them into production using either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart offers 2 hassle-free techniques: utilizing the instinctive SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's check out both methods to assist you select the approach that best fits your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to deploy DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, select Studio in the navigation pane. 2. First-time users will be prompted to produce a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The model browser shows available models, with details like the company name and design abilities.

4. Search for DeepSeek-R1 to view the DeepSeek-R1 model card. Each design card shows essential details, including:

- Model name

  • Provider name
  • Task classification (for example, Text Generation). Bedrock Ready badge (if relevant), suggesting that this model can be signed up with Amazon Bedrock, enabling you to utilize Amazon Bedrock APIs to invoke the model

    5. Choose the model card to see the design details page.

    The model details page consists of the following details:

    - The model name and supplier details. Deploy button to release the design. About and Notebooks tabs with detailed details

    The About tab includes essential details, such as:

    - Model description.
  • License details.
  • Technical specifications.
  • Usage guidelines

    Before you release the model, it's recommended to examine the model details and license terms to validate compatibility with your use case.

    6. Choose Deploy to proceed with deployment.

    7. For Endpoint name, utilize the automatically produced name or create a custom-made one.
  1. For Instance type ¸ select a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, get in the variety of instances (default: 1). Selecting suitable instance types and counts is crucial for expense and efficiency optimization. Monitor your implementation to adjust these settings as needed.Under Inference type, Real-time reasoning is chosen by default. This is optimized for sustained traffic and low latency.
  3. Review all configurations for precision. For this design, we highly suggest adhering to SageMaker JumpStart default settings and making certain that network isolation remains in location.
  4. Choose Deploy to release the design.

    The implementation procedure can take numerous minutes to finish.

    When deployment is total, your endpoint status will change to InService. At this point, the model is ready to accept inference demands through the endpoint. You can keep an eye on the release progress on the SageMaker console Endpoints page, which will display relevant metrics and status details. When the deployment is complete, you can conjure up the design using a SageMaker runtime client and integrate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To get going with DeepSeek-R1 using the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the necessary AWS authorizations and environment setup. The following is a detailed code example that demonstrates how to deploy and use DeepSeek-R1 for reasoning programmatically. The code for releasing the model is supplied in the Github here. You can clone the notebook and range from SageMaker Studio.

    You can run extra requests against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail using the Amazon Bedrock console or the API, and execute it as displayed in the following code:

    Tidy up

    To avoid unwanted charges, complete the steps in this section to clean up your resources.

    Delete the Amazon Bedrock Marketplace release

    If you released the model using Amazon Bedrock Marketplace, total the following actions:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, choose Marketplace releases.
  5. In the Managed releases area, find the endpoint you want to erase.
  6. Select the endpoint, and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're deleting the correct implementation: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart model you deployed will sustain expenses if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and deploy the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies build innovative services using AWS services and accelerated calculate. Currently, he is concentrated on establishing methods for fine-tuning and enhancing the reasoning performance of big language designs. In his totally free time, Vivek takes pleasure in treking, enjoying films, and trying various foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is an Expert Solutions Architect working on generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads product, engineering, and tactical collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is passionate about building solutions that assist customers accelerate their AI journey and unlock organization value.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking